The Quest for a Simple Bioactive Analog of Paclitaxel as a Potential Anticancer Agent
نویسندگان
چکیده
Paclitaxel (PTX), introduced into the clinic in 1991, has revealed itself as an effective antimicrotubule drug for treatment of a range of otherwise intractable cancers. Along with docetaxel (DTX) and in combination with other agents such as cisplatin, it has proven to be a first-line therapy. Unfortunately, PTX and DTX carry severe liabilities such as debilitating side effects, rapid onset of resistance, and rather complex molecular structures offering substantial challenges to ease of synthetic manipulation. Consequently, the past 15 years has witnessed many efforts to synthesize and test highly modified analogs based on intuitive structural similarity relationships with the PTX molecular skeleton, as well as efforts to mimic the conformational profile of the ligand observed in the macromolecular tubulin-PTX complex. Highly successful improvements in potency, up to 50-fold increases in IC50, have been achieved by constructing bridges between distal centers in PTX that imitate the conformer of the electron crystallographic binding pose. Much less successful have been numerous attempts to truncate PTX by replacing the baccatin core with simpler moieties to achieve PTX-like potencies and applying a wide range of flexible synthesis-based chemistries. Reported efforts, characterized by a fascinating array of baccatin substitutes, have failed to surpass the bioactivities of PTX in both microtubule disassembly assays and cytotoxicity measurements against a range of cell types. Most of the structures retain the main elements of the PTX C13 side chain, while seeking a smaller rigid bicycle as a baccatin replacement adorned with substituents to mimic the C2 benzoyl moiety and the oxetane ring. We surmise that past studies have been handicapped by solubility and membrane permeability issues, but primarily by the existence of an expansive taxane binding pocket and the discrepancy in molecular size between PTX and the pruned analogs. A number of these molecules offer molecular volumes 50-60% that of PTX, fewer contacts with the tubulin protein, severe mismatches with the PTX pharmacophore, lessened capacity to dispel binding site waters contributing to ΔGbind, and unanticipated binding poses. The latter is a critical drawback if molecular designs of simpler PTX structures are based on a perceived or known PTX binding conformation. We conclude that design and synthesis of a highly cytotoxic tubulin-assembly agent based on the paclitaxel pharmacophore remains an unsolved challenge, but one that can be overcome by focus on the architecture of the taxane binding site independent of the effective, but not unique, hand-in-glove match represented by the PTX-tubulin complex.
منابع مشابه
A Comparison between the Anticancer Activities of Free Paclitaxel and Paclitaxel-Loaded Niosome Nanoparticles on Human Acute Lymphoblastic Leukemia Cell Line Nalm-6
Background: Niosomes or Nonionic surfactant vesicles are nano vehicles utilized in drug delivery systems, especially in cancer therapy. In this study, these vesicles were applied as delivery system for anticancer drug, paclitaxel and then, its anticancer activities was compared with free paclitaxel on Human Acute Lymphoblastic Leukemia (ALL) cell line Nalm-6. Materialas and Methods: In this exp...
متن کاملAndrographolide: A New Plant-Derived Antineoplastic Entity on Horizon
Plant-derived natural products occupy an important position in the area of cancer chemotherapy. Molecules such as vincristine, vinblastine, paclitaxel, camptothecin derivatives, epipodophyllotoxin, and so forth, are invaluable contributions of nature to modern medicine. However, the quest to find out novel therapeutic compounds for cancer treatment and management is a never-ending venture; and ...
متن کاملDesign, Synthesis and Characterization of Nano niosomal Delivery system Containing paclitaxel drug for Drug Delivery to Osteosarcoma Cell Line (Saos-2)
Introduction: Osteosarcoma is one of the cancers that current treatment strategies using chemotherapy drugs have not been very successful due to multiple drug resistance and harmful side effects. The use of nano-niosomal systems in the delivery of paclitaxel is one of the attractive approaches to overcome these limitations. paclitaxel is a powerful anticancer agent used in the treatment of many...
متن کاملSynergistic Anticancer Effect of Paclitaxel and Noscapine on Human Prostate Cancer Cell Lines
Paclitaxel is the one of the most common chemotherapeutic drugs used for the treatment of prostate cancer. However, its current clinical utility has been limited due to numerous serious side effects and drug resistance. Noscapine is an antitussive opium alkaloid that showed antitumor activity against a variety of cancer while has not exhibited severe side effects. This study investigates the a...
متن کاملSynergistic Anticancer Effect of Paclitaxel and Noscapine on Human Prostate Cancer Cell Lines
Paclitaxel is the one of the most common chemotherapeutic drugs used for the treatment of prostate cancer. However, its current clinical utility has been limited due to numerous serious side effects and drug resistance. Noscapine is an antitussive opium alkaloid that showed antitumor activity against a variety of cancer while has not exhibited severe side effects. This study investigates the a...
متن کاملCalixarbutin: A Novel Calixarene-based Potential Water-soluble Anti-tyrosinase Agent with High Anti-melanoma Activity
Since melanocytes are the origin of melanoma and some skin disorders such as melasma, they are important cells from the perspective of medicinal chemistry. Therefore, a medication that can simultaneously overcome these diseases will be a successful potential therapeutic agent. Arbutin with phenolic structure is a powerful natural anti-tyrosinase agent. Hence, the phenolic structure of this drug...
متن کامل